Бионика

Бионика (от др.-греч. βίον — живущее) — прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Различают:

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические  модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой,навигацией, связью, морским делом и другими.

Название бионики происходит от древнегреческого слова бион — «ячейка жизни». Изучает бионика биологические системы и процессы с целью применения полученных знаний для решения технических задач. Бионика помогает человеку создавать оригинальные технические системы и технологические процессы на основе идей, найденных и заимствованных у природы.

Биомиметика

В англоязычной и переводной литературе чаще употребляется термин биомиметика (от др.-греч. βίος — жизнь, иμίμησις — подражание) в значении — подход к созданию технологических устройств, при котором идея и основные элементы устройства заимствуются из живой природы. Одним из удачных примеров биомиметики является широко распространенная текстильная застёжка, прототипом которой стали плоды растения репейник, цеплявшиеся за шерсть собаки швейцарского инженера Жоржа де Местраля. Другой удачный пример — зонт, прототипом которого стало соответствующее соцветие.

История развития

Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц: орнитоптер.

Появление кибернетики, рассматривающей общие принципы управления и связи в живых организмах и машинах, стало стимулом для более широкого изучения строения и функций живых систем с целью выяснения их общности с техническими системами, а также использования полученных сведений о живых организмах для создания новых приборов, механизмов, материалов и т. п.

Основные направления работ

  • изучение нервной системы человека и животных и моделирование нервных клеток (нейронов) и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика);
  • исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения;
  • изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике;
  • исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.

Моделирование живых организмов

Создание модели в бионике — это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчёта заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.

И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа — бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

Именно так, на основе программного моделирования, как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них — изыскание лучшей экспериментальной технологической основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт неформализованного «размытого» моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число её эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач оптимального управления, экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвлённых систем связи и т. п.

Архитектурно-строительная бионика

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых шуб, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Яркий пример шубной архитектурной бионики — полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. Их строение сходно с конструкцией современных высотных фабричных труб — одним из последних достижений инженерной мысли. Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы) стеблей — кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

Бионика подтверждает, что многие человеческие изобретения имеют аналоги в живой природе, например, застежки «молния» и «липучки» были сделаны на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования «динамических структур», а в 1991 г. организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1228 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 метров. Между кварталами — перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов — разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты — аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить ещё несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Нейробионика

Основными направлениями нейробионики являются изучение физиологии нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это даёт возможность совершенствовать и развивать архитектуру электронной и вычислительной техники. Существуют теории, утверждающие, что развитие нейробионики будет основанием создания искусственного интеллекта.

Discovery-vision.ru Powered 2015

Яндекс.Метрика