Гамма-излучение

Гамма-излучение (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2⋅10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится кионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков.

Гамма-излучение представляет собой поток фотонов, имеющих высокую энергию (гамма-квантов). Условно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1—100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер ( энергии таких гамма-квантов лежат в диапазоне от~1 кэВ до десятков МэВ), при ядерных реакциях, при взаимодействиях и распадах элементарных частиц (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях. Энергия гамма-квантов, возникающих при переходах между возбуждёнными состояниями ядер, не превышает нескольких десятков МэВ. Энергии гамма-квантов, наблюдающихся в космических лучах, могут превосходить сотни ГэВ.

Гамма-излучение было открыто французским физиком Полем Вилларом в 1900 году при исследовании излучения радия. Три компоненты ионизирующего излучения радия-226 (в смеси с его дочерними радионуклидами) были разделены по направлению отклонения частиц в магнитном поле: излучение с положительным электрическим зарядом было названо α-лучами, с отрицательным — β-лучами, а электрически нейтральное, не отклоняющееся в магнитном поле излучение получило название γ-лучей. Впервые такая терминология была использована Э. Резерфордом в начале 1903 года. В 1912 году Резерфорд и Эдвард Андраде доказали электромагнитную природу гамма-излучения.

Физические свойства

Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится положительно ионизированным).Гамма-лучи, в отличие от α-лучей и β-лучей, не содержат заряженных частиц и поэтому не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

  • Комптон-эффект — гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома.
  • Эффект образования пар — гамма-квант в электрическом поле ядра превращается в электрон и позитрон.
  • Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.

Детектирование

Зарегистрировать гамма-кванты можно с помощью ряда ядерно-физических детекторов ионизирующего излучения (сцинтилляционных, газовых, полупроводниковых и т. д.).

Использование

Гамма-дефектоскопия — контроль изделий просвечиванием γ-лучами.Области применения гамма-излучения:

  • Пищевая промышленность: консервирование пищевых продуктов (гамма-стерилизация для увеличения срока хранения).
  • Медицина: стерилизация медицинских материалов и оборудования; лучевая терапия; радиохирургия.
  • Гамма-каротаж в геофизике.
  • Приборы для измерения расстояний: уровнемеры, гамма-высотомеры на космических аппаратах.
  • Гамма-астрономия.

Биологические эффекты

Облучение гамма-квантами в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток при локальном воздействии на них. Гамма-излучение является мутагенным и тератогенным фактором.

Защита

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

В таблице ниже указаны параметры слоя половинного ослабления гамма-излучения с энергией 1 МэВ для различных материалов:

Материал защитыПлотность, г/см³Слой половинного ослабления, смМасса 1 см² слоя половинного ослабления, г
Свинец11,350,89,08
Бетон1,5-3,53,8-6,95,7-24,15
Сталь7,5-8,051,279,53-10,22
Железо7,861,511,79
Алюминий2,824,312,13
Вольфрам19,30,336,37
Вода1,00~10~10
Обеднённый уран19,50,285,46
Воздух0,0013~8500~11,05

Хотя эффективность поглощения и зависит от материала, первоочередное значение имеет просто удельный вес.